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Figure 8. Calculated (5X+/3) LEED pattern.®

species derived from the phosphate buffer are not present on the
surface.

As the potential is made more positive than —0.4 V, the expected
electrodesorption of Cs* ions is borne out by the data in Figures
3and 5. In addition, ©; increases while O¢, decreases. The absence
of counter cations at the interface and the data afforded by the
XPS experiments indicate that the iodine species which exist on
the surface under these conditions is zerovalent. The zerovalency
of the surface iodine and the fact that the increase in O is
coincident with the emergence of the first anodic peak in the cyclic
voltammogram in Figure 6 lead to the conclusion that formation
of the new superlattice is via an oxidative chemisorption (anodic
deposition) reaction. The (v/ 3X+/3)R30° LEED pattern observed
here is typical for adlattices formed from the adsorption of
halogens on the (111) surface plane of transition metals. 6,21,26-31
The interfacial structure generally proposed for this particular

(26) Erley, W. Surf. Sci. 1980, 94, 281.

(27) Felter, T. E.; Hubbard, A. T. J. Electroanal. Chem. 1979, 100, 473.

(28) Goddard, P. J.; Lambert, R. M. Surf. Sci. 1977, 67, 180.

(29) Erley, W.; Wagner, H. Surf. Sci. 1977, 66, 371.

(30) Salaita, G. B.; Lu, F.; Languren-Davidson, L.; Hubbard, A. T. J.
Electroanal. Chem. 1987, 229, 1.

(31) Stickney, J. L.; Ehlers, C. B. J. Vac. Sci. Technol. A 1989, 7, 1801.

(32) Pauling, L. P. The Nature of the Chemical Bond; Cornell University
Press: New York, 1960; Chapter 7.

(33) Schardt, B. C.; Thiesen, R. Unpublished LEED pattern calculations.

LEED pattern involves the adsorption of one-third of a monolayer
of halogen atoms (8; ~ 0.33) in which each halogen atom is
situated in the 3-fold sites. Such a structure, drawn to atomic
dimensions, is depicted in Figure 7b. It is essential to note in this
figure that the I atoms are not fully close-packed; that is, enough
space is still available on the Au(111)(v/3X+/3)R30°-I adlayer
for additional iodine chemisorption.

Coincident with the appearance of the second anodic peak in
the voltammetric curves (Figure 6) are: (i) a still further increase
in 6; to 0.4, and (ii) a change from a (v/3Xv/3)R30° toa (5Xv/3)
LEED pattern (Figure 4c). The latter is also frequently observed
on the (111) planes of transition metals exposed to halogens, 23!
but is occasionally mislabeled as a (v/3X+/3)R30° “split pattern”
because of the characteristic groups of spots at the v/3 positions
and the absence of other fractional-order beams (Figure 8). A
structure that contains a combination of v/3 and (12X12) sym-
metry elements has previously been assigned, erroneously, to this
particular LEED pattern.! Figure 7c shows one structure that
is consistent with the LEED apd:AES data. This structure is
formed by (i) forcing some of the I atoms originally present in
3-fold sites into less ideal sites, and (ii) compacting the (v/3X
+/3)R30° structure in one dimension. Three domains are formed
of this structure, each rotated by 120°. The result of the com-
pression is the formation of a close-packed, albeit slightly distorted,
hexagonal structure. Under these conditions, saturation chemi-
sorption of I atoms, limited by van der Waals dimensions, is
reached.

At still more positive potentials, such as at 0.4 V, additional
iodine atoms forced into the already space-limited interfacial layer
only leads to the formation of molecular iodine which is evolved
into the solution as I,(aq). This, of course, represents the anodic
part of the reversible I;(aq)/I"(aq) redox couple. At considerably
higher potentials, the I(ads) atoms and the I,(aq) molecules are
all oxidized to 1057(aq) ions.

The results and conclusions of the present study closely parallel
those for iodide/iodine at Pt(111)° which, in the area of elec-
trochemical surface science, is a fundamentally significant trend.
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Electrostatic Forces between Charged Surfaces in the Presence of a Polyelectrolyte

Chain
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We have derived the self-consistent field equations describing the configurational statistics of an infinitely long polyelectrolyte
chain confined between two charged macroscopic surfaces. We were able to obtain an analytic solution of the linearized
SCF equations in the limit of the ground-state dominance. This permits us to investigate the connection between the
polyelectrolyte conformation and the intersurface forces for different values of the parameters describing the system. The
most important characteristics of the interaction free energy is a region of intersurface separations where the interactions
are attractive. We show that the onset of attraction is connected with a conformational transition of the confined chain.

Introduction

The study of electrostatic interactions between macroscopic
surfaces with fixed charges immersed in an aqueous electrolyte
has been extensive in the past, and the understanding reached on
the theoretical level is usually subsumed under the heading of the
DLVO theory.! In this framework the electrostatic interactions

between macroscopic bodies are broken into two disjointed con-
tributions. First of all there is a contribution that has its origin

(1) Derjaguin, B. V.; Churacv, N. V.; Muller, V. M. Surface Forces;
Consultants Bureau: New York, 1987.  Israclachvili, J. N. Intermolecular
and Surface Forces; Academic Press: London, 1985.
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in the creation of double layers close to the charged surfaces. Their
existence is due to the interplay of entropic effects, which favor
homogeneous distribution of mobile charges, and electrostatic
attraction between the charges on the surfaces and their coun-
terions in the aqueous environment, described on the level of the
Poisson-Boltzmann equation. This contribution to the total force
between the surfaces is repulsive if the surfaces bear charges of
the same sign. The second contribution is attractive, irrespective
of the charges on the surfaces, and has its origin in the fluctuations
(thermodynamic as well as quantum mechanical) of the local
electrostatic fields in the dielectric media involved. It is usually
referred to as the van der Waals-Lifshitz interaction.

In the present work we shall be concerned with a model system
that presents a substantial variation on the s.c. primitive model,
taken as a starting point of the DLVO theory. It is composed
of two charged, impenetrable surfaces with an infinitely polye-
lectrolyte chain spanning the region between them. The statistical
mechanics of a single polyelectrolyte chain in the bulk has-been

worked out on different levels of approximations starting.from-

the seminal work of Richmond.2  On the other side the problem
of a confined (neutral) polymer, first addressed by Dolan and
Edwards? and independently by Richmond and Lal,* is also well
worked out, and the forces between confining surfaces have been
studied in detail.> The present problem is closely connected to
these two and has been, to our knowledge, first approached by
Akesson et al.5 In their case it is only the connectivity of the
polyelectrolyte chain that separates their model system from the
counterion-only case where the intersurface space contains only
mobile counterions. In spite of this similarity the intersurface
forces bear almost no resemblance to the latter case and show a
pronounced region of attraction totally absent in the former case
(at least on the Poisson-Boltzmann level).

In our approach to the problem of a confined polyelectrolyte
chain immersed in an electrolyte solution we shall try to remain
as close to the Poisson—Boltzmann approach to a confined elec-
trolyte as possible. We shall formulate the appropriate partition
function in a form of a field theory similar to the one used in the
case of a confined Coulomb fluid.” We showed for this case that
the saddle-point configuration of the local electrostatic fields
corresponds to the solution of the Poisson-Boltzmann equation.
Using the saddle-point ansatz in the presence of the confined
polyelectrolyte chain will naturally lead to a generalization of the
Poisson-Boltzmann equation where the statistical averages over
the polymeric degrees of freedom will be included in a self-con-
sistent manner. The equations derived by this procedure will be
quite close to those used in the SCF treatment of the polymer-
excluded volume and indeed represent a variation on the SCF
equations for the electrostatic excluded-volume problem derived
by Kholodenko and Beyerlein.® To solve this new set of coupled
self-consistent equations, we shall introduce a linearization ap-
proximation by completely ignoring the effects of the electrostatic
stiffening of the polyelectrolyte chain.® This will permit us to
obtain an analytically solvable equation for the polyelectrolyte
Green's function and the interaction free energy in the ground-state
dominance limit. We shall perform a detailed investigation of
the behavior of the interaction free energy as a function of the
dimensionless intersurface separation. We shall also draw some
conclusions on the connection between the polyelectrolyte con-
formation and the intersurface forces, specifically, we shall dem-
onstrate that the onset of attractive forces between the charged
surfaces is connected with a conformational transition of the

(2) Richmond, P. J. Phys. A 1973, 6, L109. For a critical discussion of
ichmond's work see: de Gennes, P.-G.; Pincus, P.; Velasco, R. M.; Brochard,

F. J. Phys (France) 1976, 37, 1461. .

(3) Dolan, A. K.; Edwards, S. F. Proc. R. Soc. London, A 1974, 337, 509.

(4) Richmond, P.; Lal, M. Chem. Phys. Lett. 1974, 24, 594.

(5) de Gennes, P.-G. Adv. Colloid Interface Sci. 1987, 27, 189.
) 46(16) Akesson, T.; Woodward, C.; Jonsson, B. J. Chem. Phys. 1989, 91,
(7) Podgornik, R.; Zeks, B. J. Chem. Soc., Faraday Trans. 2 1988, 84, 611.
Podgornik, R. J. Phys. 1990, 432, 275.

(8) Kholodenko, A. L.; Beyerlein, A. L. Phys. Rev. A 1986, 33, 2640.

(9) Muthukumar, M. J. Chem. Phys. 1987, 86, 7230.
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Figure 1. Model system. Two charged surfaces (surface charge density
o) at a separation 2a with an infinitely long polyelectrolyte chain (charge
per bead 7) between. The dielectric constant ¢ is supposed to be the same
in all regions of the space. The boundary surfaces represent an impen-
etrable barrier to the polyelectrolyte.

confined polyelectrolyte chain. A connection with the previous
work on the problem will be established and commented upon.

In this contribution, in accord with the previous work on the
subject,® we shall confine ourselves to a model system characterized
by smeared surface charges and a dielectric constant assumed to
be uniform throughout the system. The presence of discrete
surface charges and/or dielectric discontinuities (image forces)
is known to lead to different quantitative variations in the statistical
properties of the charged system'9? but rarely has any qualitative
effect.

Theory

The polyelectrolyte is modeled as a free-flight chain with charge
7 per bead of length /, with a total contour length equal to N/.
The polyelectrolyte chain is confined between two impenetrable
surfaces separated by 2a, each carrying a surface charge density
o, Figure 1. The sign of the charges on the polymer is opposite
to the sign of the fixed charges on the walls. All the electrostatic
interactions are mediated by a Coulomb potential of the form
u(r,r’) =1/ meeg|r — r, being a solution of the Poisson equation
—eegV2u(r,r) = 5(r - r’), where e is the dielectric constant and
o(r) is the Dirac 6 function. The configuration part of the
Hamiltonian can be written in a discretized form:

3kT 1 1.,2 R
H= 2_21 (Risy - R)* + EZU Tu(R,R)) - > ?u(R,. )
(1

Indexes i and j run over all polymer beads. In what follows we
shall strictly use a continuum representation of the Gaussian chain
that amounts to the following formal replacement: (R, - R)?
— [¥(dR(n)/dn)? dn, where R(n) now stands for the coordinate
of the nth bead along the polymeric chain. The electrostatic
potential acting on the polyelectrolyte charges between two infinite
charged walls is a constant and can be disregarded. This does
not mean that the magnitude of the surfaces charges is irrevelant
since the system as a whole has to remain electroneutral in order
that a stable thermodynamic state can be reached. As is usual
in the case of Poisson—Boltzmann type theories the electroneu-
trality enters the discussion through the boundary condition for
the mean potential (vide eq 14).

l'g‘he configurational part of the partition function now follows
as

Z= llqe""’”.i)lt(n) ’ )

where 8 is the inverse thermal energy, 8! = kT. The integration

(10) Freed, K. F. Renormalization Group Theory of Macromolecules;
Wiley and Sons: New York, 1987.
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measure in the above equation is defined as DR(n) = d*R(1)
d’R(2)...d*R(N).

We shall now proceed by introducing the Hubbard-Stratono-
vich transformation for the pair interactions, reducing them to
effective one-particle interactions with auxiliary field ¢ (see ref
7 for details):

exﬂ'yzﬁ%?“(’ isT j)} =
A@) J, Do) expt-HBT o) (1) 6(7) + BTG
©)

where A(8) = (2x)V/%(det Bu7'(r.r))'/? and De(r) = lim,... dp(r,)
d¢(ry)..de(r,). Though the Hubbard-Stratonovich transformation
has been written in a discretized form, it is straightforward to get
its continuum representation, amounting to a formal replacement
T #(r) — Sé(r) d°r. The inverse of the pair interaction potential
has been defined in a standard manner:

Pl
' f wN(rr) u(r.r’) & = 3(r - ) ()

Clearly for the Coulomb potential u™'(r,r') = —ecod(r — r')V2.
The Hubbard-Stratonovich transformation permits us to write

the pair interactions in an effective one-particle form, remaining

with the following compact form of the partition function:

£ =A@ [ [(GRR:N) FRER  (5)

where Uy(N) =/ Bea Nu(R,R) is the electrostatic self-energy
of the polyelectrolyte chain. G4(R,R’;N) is obtained in the
standard form of a Wiener integral:

o L (MR 3 N dR(n) \?
G,RR’;N) = RO)=R DR(n) cxP(—-2-I_2‘£ ( an ) dn

+ i) [ SRY) dn ) ©)

and is clearly nothing but the Green’s function of a Gaussian
polymer chain in an external field.!® A representation of the
polyelectrolyte partition function similar to eq S has already been
derived by Kholodenko and Beyerlein® in the case of a screened
Coulombic potential. Furthermore, since u(r,r’) is a solution of
the Poisson equation, we can use its inverse in a continuous version
of eq 3 to obtain the following form for the ¢ average in eq 5:

(e = f DO(r)(...)e 1/ DBeaf (VY Pr-iB S god’s
. = f D(r)(...)ebH 10

where-the action in the last line of the above equation is nothing
but the electrostatic free energy evaluated at imaginary values
of the charges; therefore

H, = Fy(ie) = Yyee f (VR dr+ifoodr  (8)

We can now take into account all the above developments and
derive the final expression for the partition function eq 5:

== A(p)eup(”)f.‘l)cb(r)e“’s‘ 9
where the action in the above equation can be put into the form
S,= Hy~kTin ( f fGRR:M FRER)  (10)

This concludes our formal developments. Clearly the partition
function eq 9 cannot be evaluated explicitly since the action in
the functional integral is highly non-Gaussian due to the implicit
dependence of the polymeric Green’s function on the local po-
tential. We therefore use the saddle-point method to obtain the
equilibrium profile of ¢. Standardly the saddle-point is defined
as a solution of (see Ref 11 for details):

85,/86(r) = 0 amn
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We shall not write down this functional derivative explicitly at
this stage. To evaluate it, one needs the following identity, which
can be derived directly from the representation of the Green’s
function eq 6 as a solution of a diffusion type equation,'? viz.

[8/56(] In ( f fo,mRr:M @R @R) = iBro,)  (12)
where py(r) is the polymer segment density evaluated at point r:
N
S SR ER [ dn Gy(R:N-n) Gy(r.R'5n)
{ f¢RER G,RRN)

The functional derivative eq 11 now decouples into two terms:
a volume contribution that amounts to a modified Poisson equation
and a surface contribution in a form of a boundary condition,
expressing the electroneutrality of the system. It is straightforward
to see that the boundary condition demands that the saddle-point
¢ be pure imaginary. Making thus the substitution ¢~#:ig, one
remains with the following saddle-point equations: %

eV2(r) = —1p,(r)  —edp/n= ¢ - (14)

where n is the local normal of the boundary surfaces. Furthermore
the polymer segment density is obtained from eq 13. with the
Green’s function eq 6 satisfying!” :

pe(r) = 13)

a P
[3,;, -5V (Bne(R) ]Go(R,R';N) = 5(R - R) 8(N) (15)

Relations eqs 13-15 represent the self-consistent field equa-
tions!2 for a polyelectrolyte confined between two charged walls.
Equation 14 could also be viewed upon as a Poisson-Boltzmann
equation for the polyelectrolyte chain, where the average local
number density at position r,p,(r), is given as a polymer config-
urational average py(r) = (e*”t')). This expression is rather more
complicated than in the case of absent connectivity (counterion-
only system'), where p,(r) = e##®. The SCF equations relate
in a rather nondirect manner to the polyelectrolyte Poisson—
Boltzmann approximation (PPB), set forth by Akesson et al.® The
major difference with respect to this work is in the treatment of
the statistical average over the polyelectrolyte configurations, which
is done explicitly in our case, egs 6 and 13, in contrast to a
seminumerical procedure exploited in ref 6. To avoid confusion,
we shall refer to our approximation scheme as the single-chain
Poisson—-Boltzmann approximation for polyelectrolytes (SC-PBP).

Linearization of the SCF Equations

In what follows we shall reduce the basic set of SCF equations
to a form appropriate for our model system in the thermodynamic
limit, defined by the following limiting procedure, N = <, § —
o (in this order), where S is the area of the bounding surfaces,
while N/S = constant. The order of both limits is important since
it prevents trapping of the chain in the vicinity of a single surface.
The trapping of the chain with unsymmetric distribution of the
polymer beads between the surfaces would be present only if finite
size effects (finite V) or physical adsorption of the chain on one
of the surfaces would play a role in the behavior of the system.
In this article we disregard such possibilities and concentrate only
on the generic electrostatic effects in the thermodynamic limit
(N = ©, § — =), In this limit we also assume that the basic
quantities of the model do not depend on transversal coordinates
(xp)-

The thermodynamic limit, defined above, now leads to the
following normalization of the segment density, derivable from

eq 13:

(11) Rivers, R. J. Path Integral Methods in Quantum Field Theory;
Cambridge University Press: Cambridge, 1987; Chapter 5.

(12) Freed, K. F. J. Chem. Phys. 1971, 55, 3910.

(13) Abramowitz, M.; Stegun, 1. A. Handbook of Mathematical Func-
tions; Dover: New York, 1968.

(14) Mansfield, M. L. J. Chem. Phys. 1988, 88, 6570. de Gennes, P.-G.
J. Chem. Phys. 1974, 60, 5030.
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J:ﬂp‘(z) dz=N/S (16)

Additionally we also introduce the ground-state dominance ansatz
for the Green’s function in the limit N — =, leading to the
following representation:

G4(RR"N) = Gy(2,23N) =~ Y(2) Y(z)eExN  (17)

Furthermore we shall define the monomer density as py(z) =
(N/S)W?*(2), so that the proper normalization of ¥(z) can be
obtained as f*°y?(z) dz = 1. In view of this definition we can
write the solution of eq 14 for the mean potential in the form

#(z) = -— N +a|z - zW2(z") dz’ (18)

€€g SJ
It is quite straightforward to establish that the boundary condition
eq 14 reduces to 7V/S = ¢ if the polyelectrolyte chain and the
surfaces bear charges of opposite sign. If this equality holds, the
system will remain overall electrically neutral. We now use the
solution eq 18 as a closure relation for the equation determining
the Green’s function of the polymeric chain, i.e., eq 15. In the
ground-state dominance this equation reduces to the following
closed equation for Y(z):

2 d%(2)
6 dz?

+ B + 2 - 2ty g = 0
(19)

with an additional boundary condition that y(z) has to vanish at
the impenetrable surfaces, z = 4. The above equation clearly
has the form of a one-dimensional Hartree equation, where the
range of the potential is the same as the dimensions of the system.
This makes it quite difficult to solve in general since the potential
cannot be approximated by its zeroth Fourier component.!S We
therefore have to resort to a different way of approaching eq 19.

Since we need only even solutions of eq 19, we can delimit
ourselves to the region z > 0, while demanding that dy/dz(z=0)
= 0. In this region we can derive the following alternative form
of the last term in eq 19:

+a
V@) W) = [z - 2@ dz' o) =
29 +2 [ whu + 2) Y(z) du (20)

This representation allows us to linearize equation eq 19 by keeping
only the first term on the right-hand side of eq 20. This linear-
ization should work quite well whenever z is close to the boundaries
of the system where we have

dV(z)
dz

d2¥(z)

1ma dz?

(21

z=q

Also, it is in this regime that ¥(z) is largest and therefore the
linearized solution should not be far from the exact one (at least
if the electrostatic coupling in the system is small). The linear-
ization procedure would fail most dramatically in the vicinity of
z = 0, where we can derive the following approximate form:

W(z) = (z) + ¢*(z=0)z2 + ... (22)

where we introduced the average position of the chain as (z) =
2 fsuyA(u) du.

By linearizing the self-consistent interaction potential in eq 19,
we have essentially excluded effects like electrostatic stiffening
of the chain (see ref 9) from subsequent discussion. With this

(15) Wiegel, F. W. Introduction to Path-Integral Methods in Physics and
Polymer Science; World Scientific: Singapore, 1986; p 52.
(16) Chan, D.; Davies, B.; Richmond, P. J. Chem. Soc., Faraday Trans.
21976, 72, 1584,
06(2”) Jones, I. S.; Richmond, P. J. Chem. Soc., Faraday Trans. 2 1977, 73,
1062.
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linearization ansatz eq 19 becomes

2 d¥(2) Bro

. “+ + — =

6 a2z T EW(@) p” W) =0 (23
with the boundary conditions

dy

-d—z(z=0) =0 ¥(z=a) =0 (249)

This equation is now in the form of an eigenvalue problem allowing
a solution in terms of Airy’s functions.’* Clearly for positive
eigenvalues we have to choose the largest Ey satisfying the
boundary conditions eq 24. On the contrary, in the case of bound
states corresponding to Ey < 0, we have to obtain a solution of
the boundary conditions corresponding to the smallest energy
eigenvalue. '

Results

To write down the solution of the linearized equation deter-
mining the spatial profile of the polyelectrolyte density distribution,
we first introduce the dimensionless variables

6Ex
T PAgS

where Ay = 6870/%¢cq, and in terms of which an even solution
of eq 23 can be obtained as

y x = Az (25)

¥(2) =¥+ x) ~ Ai(-y - x) - MBI‘(- - x) (26)
R TR

Where Ai, Bi, Ai’, and Bi’stand for the two linearly independent

solutions of the Airy equation and their derivatives. To obtain

a normalized solution, we would have to divide the above ex-

pression by the square root of {&J?(z) dz, which can be obtained

directly from eq 23 in the form

a d 2
S v az = AB-'/’[ (é(y + xo)) —ywzcy)] @)

where xo = Ag'/%a. The eigenvalue y(x,) is now obtained from
the secondary boundary condition eq 24, leading to

Ai(-y - xo) _ A “»)
Bi(-y - xo)  Bi(-y)

Clearly the energy eigenvalue depends on a single parameter, xq,
and can be written in terms of a universal function y = y(x,) in
the scaling form Ey = (I2/6)A\g*3y(Xg'/*a). We shall postpone
for now the numerical solution of eq 28 and shall first try to obtain
some analytic estimates. Also we note that the scaling form of
Ey renllfin's valid even in the case of the full nonlinearized equation
eq 19.

At small intersurface separations, corresponding to xo < 1, the
steric constraints at the boundary surfaces will exclude all the
polyelectrolyte configurations that would tend to cross the borders
of the system at z = £a. This would lead to large, entropically
driven repulsion corresponding to large, positive Ey. In this limit
the boundary condition eq 28 would reduce to the following ap-
proximate form:

(28)

23/2 . 1 s x
SPP+ ot -~ —at+ .+ 2] =
tan(3y ey '‘a 45Nl/2a +4
2 x
£.3/2 -
—cot(3y3.+4) (29)

that in turn leads to the energy eigenvalue

(18) Podgornik, R. Manuscript in preparation.

(19) Bratko, D.; Jonsson, B.; Wennerstrom, H. Chem. Phys. Lett. 1986,
128, 449.

(20) Wennerstrom, H.; Jonsson, B. J. Phys. (France) 1988, 49, 1033.
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Pl (=1 1
Ey=~ g[(i) ; - E)\Ba] (30)

Clearly the first term in the above approximation for the energy
eigenvalue, which is the same as in the case of a neutral confined
Gaussian chain,>® is dominant in the small-a regime, and the
electrostatic interactions enter only as a first-order perturbation.
At small intersurface separations we are therefore dealing with
an effectively discharged system, where the eigenenergy is due
purely to steric exclusion at the borders of the confining region.

In the limit of large intersurface spacings, x, > 1, the boundary
condition eq 28 suggests that y and x, should be two large
equivalents of opposite sign. We therefore assume that the solution
of the boundary condition in this limit is given by the ansatz y
= —xo + A, obtaining for A

Ai(=4) / Bi(-4) ~ —Y,e /D= (€]))

Clearly in the regime x, » 1, A has to be close to aiy, the first
zero of Ai defined by Ai(-aig) ='0. We therefore obtain for the
eigenenergy in the lowest order approximation valid in this regime
of intersurface spacings

Ey =~ (12/6)[-\sa + aiy — 1,C(aig)e */MN'"@"] (32)

where we substituted C(aip) for the quotient |Bi(-aiy)/ Ai'(-aiy)|.
As we shall see in the next section, the first term in the square
brackets of the above equation is cancelled by the electrostatic
self-energy in the expression for the total free energy, leaving only
the exponential dependence on the intersurface spacing. What
is more important is that in this regime of x, the eigenenergy is
negative, meaning, that we are dealing with bound states, where
most of the chain is concentrated close to the boundary surfaces.
Segments of the chain that are not localized close to the surfaces,
due to the electrostatic attraction between polymer and sur-
face-bound charges, act as bridges driving the attraction between
the surfaces.® We shall verify this statement by an explicit
calculation of the monomer density distribution in the next section.

Chain Conformation and Intersurface Forces

In this section we shall evaluate the total free energy and
pressure of the system through a numerical solution of the
boundary condition eq 28. Furthermore we shall investigate the
spatial profile of the monomer density distribution in the confined
region. First of all we note that at the saddle-point in the
ground-state dominance limit the free energy can be obtained in
the form

F=-kTIn E = kTExN - Yyee f (V)2 &=  ¢o d'r
(33)

where the last two terms clearly represent the electrostatic self-
energy of the system. In the plane-parallel geometry, using also
the linearization ansatz of eq 20, we can reduce the surface density
of the free energy to the following simple expression:

F N  o?

— = — 4+ —

S kTE N S ffoa

o2
Géoxﬂl/ 3

where in the last line we took account of the electroneutrality
condition, TN/S = a. y(x,) is of course the solution of the
boundary condition eq 28, and the exact dependence of the free
energy on x, is given in Figure 2. We observe that the total free
energy is always positive with a well-developed minimum at x
= x,,. To understand the emergence of this minimum, we note
a relation that can be derived directly from the boundary condition
eq 28, i.e.

((xo) + xo) (34

Bi(-y - xo)) (35)

Bi'(-y)
where y’stands for the derivative of y with respect to x,. Therefore
it follows that the free energy has a minimum exactly at the point

o'+ 1) =yy’(
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Figure 2. Dimensionless free energy eq 34, flxg) = y(xp) + xo, as a
function of dimensionless separation xo = Ag'/>a. The dimensionless free
energy has a minimum at xo = x,, = 1.986, where y(x,,) = 0 and ap-
proaches a constant value for xo — . The inset shows the position of
the maximum of the monomer density distribution p(x) ~ y*(x) as a
function of the intersurface separation. At xq = X, there is a transition
from a unimodal to a bimodal distribution, characterized by the fact that
its maximum is displaced from the origin.
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Figure 3. Form of y(x) for x > 0, with the monomer density given as
p(x) ~ Y*(x), for two values of intersurface separation: xo = 1 and x,
= 2.9. In the first case we have a unimodal distribution, with most of
the chain concentrated close to the middle of the intersurface space, and
in the second case a bimodal distribution, where the chain segments
remain in the vicinity of the charged surfaces, leaving a depleted region
in the middle of the intersurface space.

where y(x,) crosses the abscissa, i.e., at y(x,) = 0. By a numerical
investigation we obtain x,, ~ 1.986. This value of x, has another
interesting interpretation that we elucidate in what follows.

Let us ask ourselves where does the monomer density distri-
bution have a maximum. If this maximum is at x,, = x(xo),
than we should have dy/dx (x)) = 0, leading to

Ai'(=y(xg) = Xp) _Ai (=y(x0))
Bi'(-y(xg) — x3)  Bi'(-y(xo))

Clearly one solution of this equation, in view of the first boundary
condition of eq 24, is always x), = 0, stable for xo — 0. However
on increasing the value of the intersurface spacing, we obtain that
exactly at x,, the solution x,, = 0 becomes unstable, and a new
branch develops for xg > x,, characterized by xp = 0. The details
of this transition are shown in the inset of Figure 2. The form
of the monomer density, Figure 3, for xo < x,, and xo > x,,
indicates that at x, = x,, we have a transition from an extended
polymer configuration characterized by a unimodal distribution
(where most of the chain is concentrated near the middle of the
intersurface region) to a surface-bound configuration characterized
by a bimodal distribution (with most of the chain confined in a
region close to the surfaces).

In conclusion we can say that as the eigenenergy crosses the
abscissa, the character of the monomer density distribution changes

(36)
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Figure 4. Pressure as a function of the dimensionless intersurface sepa-
ration eq 37 with py = /,0%/e¢y. Exactly at x, = x,, the force has a
turning point going from repulsion to attraction. The turning point in
the force curve corresponds to the transition from the unimodal to the
bimodal distribution of the polymer segments between the walls.

drastically and a transition from a monomodal to a bimodal
distribution of the polymer segments sets in. This transition is
quite similar to the coil-stretch transition in the bulk, studied by
Mansfield," which is accomplished by varying the strength of an
external field stretching the polymer. This field would in our case
correspond to electrostatic interactions between the charges on
the polymeric chain and those fixed on the two bounding surfaces.
It has been argued'* on the basis of an analogy with thermody-
namics that the coil-stretch transition in the bulk can be of the
first as well as of the second order. The latter possibility appears
to be true also for the transition presented in this work.!®

Let us now turn our attention to the forces acting between the
surfaces in the presence of an intervening polyelectrolyte chain.
It is quite straightforward to derive the pressure in the dimen-
sionless form:

- _11(5)
2 da\S
_laf dy
B 2 €€y de ! (37)

where again y = y(x,) is the solution of the boundary condition
eq 28. Using the normalized form of y(x), which we can obtain
by implementing in its definition eq 27, we can derive after some
substantial algebra that

d d 2
=2 —3(—‘f(z=a)) (38)

and therefore obtain the pressure in an alternative form, valid in
the frame of the linearization procedure of eq 20:

12 2fdy  \?
p=3 a(g(;(:—a)) - 1) (39)

The dependence of pressure on x, is displayed in Figure 4 and
can be given in an explicit form for the two limiting cases

. a? (w)zl 1
mpz “o)\n( 2) + 4>\n)

2
limp =~ -1 LXB'/‘O(aio)allze’(‘ﬂ)h'/’a”’ (40)
e 2 eg

The pressure is therefore repulsive at small separation with a
dominant steric term (the system is effectively discharged) and
is attractive at large intersurface spacings of an approximately
exponential form.

In connection with the above form of the pressure, eq 39, a few
remarks are in order. It is well known that in the Poisson—
Boltzmann theory, dealing with mobile ionic charges without any

. Podgornik

connectivity between them, the pressure acting between the
confining surfaces can be expressed through the contact theorem
in the form!

= kTo(@) - 1 2 | (41)
P = kTo(a) - 5 =

where p(a) is the density of confined ions right at the confining
surfaces. In the mean field (saddle-point?) approximation the first
term of the above relation is always larger than the second, leading
to repulsive forces for all values of the intersurface spacing. The
Poisson—Boltzmann contact theorem eq 41 clearly does not make
sense in the polyelectrolyte case because the connectivity of the
chain fixes the value of the monomer density at the excluding
surface to zero, i.e., p(a) = 0. Since the new polymer contact
theorem, eq 39, has been derived by taking account of the line-
arization approximation, its general validity remains yet to be
determined.'® It has, however, a nice property that (at least in
the linearized regime) it remains valid for any value of the
electrostatic coupling Ag.” =

Discussion

In this work we have developed a general formalism describing
the conformation of a charged polymeric chain confined between
two oppositely charged, impenetrable walls. In spirit the formalism
is quite close to the SCF approach amply used in the analysis of
the excluded volume interactions of polymers in the bulk.!®12 The
main difference lies in the fact that in our case the pair potential
is Coulombic, whereas it is approximated by a & function in the
excluded volume case.

To solve the general equations describing the monomer density
distribution between the walls, we had to introduce a linearization
ansatz, eq 19, which reduced a Hartree type equation to a simple
eigenvalue problem. In this framework we showed that forces
between the surfaces can be either attractive or repulsive, de-
pending solely on the dimensionless separation between the walls,
Xo. Furthermore the change from repulsion to attraction at X
= X,, is accompanied by a conformational transition of the
polymeric chain, which can be characterized as a continuous
transition of the monomer density distribution from a unimodal
to a bimodal form. We were able to obtain asymptotic forms for
the free energy as well as the total force acting between the
surfaces when the intersurface separation is either very small or
very large. The pressure acting between the walls was shown to
be determined by a special form of the “contact condition” (usually
used in the frame of the Poisson-Boltzmann theory of the elec-
trostatic forces between charged surfaces with intervening freely
mobile ionic charges), connecting the derivative of ¥ at the
boundary surfaces with forces acting between them. The con-
clusions reached in this work point to the view that the properties
of a confined polyelectrolyte chain are due to an interplay of
entropic effects, stemming from the steric exclusion at the
bounding surfaces, and electrostatic forces that promote soft
binding of the chain to the oppositely charged surfaces. This
differs from the PB case, where steric exclusion of ions at the
surfaces does not lead to depletion layers close to the surfaces.

Though the general theory developed in section II is quite close
to the self-consistent treatment of the excluded-volume effect, the
final results bear almost no resemblance to this case. The in-
teraction of two surfaces, where the intervening space contains
a polymeric chain with excluded-volume interactions, was discussed
by Wiegel." In this case the Hartree type equation, eq 18, reduces
to a form quite similar to a one-dimensional Landau-Ginzburg
equation.!” An approximate analysis of the solutions of this
equation points to the conclusion that forces between the surfaces
are always repulsive and the pressure behaves asymptotically as
P ~ a®. A model system that bears some similarity to the
confined polyelectrolyte case was studied by Chan et al.i® These
authors considered a confined polymer chain where interaction
with the surfaces is described by a finite adsorption energy.
Depending on the magnitude of the adsorption energy the in-
tersurface force can be either repulsive or attractive; however, it
has no turning points, being of the same sign for all values of the
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intersurface spacing. Our system therefore behaves as if the
«adsorption energy”, stemming from an effective electrostatic
attraction between the charges on the surfaces and on the poly-
meric chain, would be a function of the intersurface spacing,
varying in magnitude as the separation between the surfaces is
changed. |

Recently Akesson et al.5 studied a problem that is quite close
to the one presented in this work. There are, nevertheless, im-

rtant differences concerning the treatment of the steric exclusion
at the walls that manifest themselves most ostensibly in the form
of the “contact theorem”, eq 41, used by these authors. As already
stated above, this form of the “contact theorem” is not applicable
when there is real steric exclusion (as indeed is the case for our
model system) acting at the walls, since it reduces the monomeric
density at the walls to zero. However the interaction energy used
by Akesson et al.% contains no such terms, and the Poisson—
Boltzmann contact theorem appears to be valid for their case only
inasmuch as it describes a situation where “in essence the un-
derlying chain is able to penetrate into the aggregate™. This
difference in the treatment of steric exclusion at the surfaces
precludes a quantitative comparison of our results with theirs. The
differences, as expected, are most clearly seen in the monomeric
density profile, which in our case always displays a minimum right
at the wall, whereas in their case it is often largest at the wall
(Figures 2-6 of ref 6). Qualitative differences in the dependence
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of pressure on the intersurface separation are much less pro-
nounced, and an attractive region is observed in both systems. Let
us just add that in our case there does not seem to be any indication
that the pressure could become repulsive again at very large
separations.

Though our model system is admittedly highly idealized due
to the absence of other mobile charges in the bathing solution (such
as counterions or ions generated by dissolution of salts), the study
of more complex ionic systems involving polyelectrolytes and salts'®
shows that it displays all the generic features that are present even
in these more realistic cases. It is therefore a valid limiting case,
the behavior of which can be recovered even in more realistic model
systems.

The problem of interactions between charged surfaces with an
intervening polyelectrolyte chain is of a far greater complexity
than one would naively expect on the basis of our experience with
the Poisson-Boltzmann equation.! From the theoretical side it
is indeed quite fascinating since it leads to a common ground for
the application of different methods amply used by the molecular
force and the polymer community.
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The structures of Yb,Na-Y zeolites containing sorbed perdeuterated xylenes have been studied for two different xylene converages

at 5 K by powder neutron diffraction. The space group is Fd3m. The ytterbium ions are located in the sodalite cage on
position I or in the hexagonal prism on position I. The sodium ions are all located on position II in the six-ring window
shared by the sodalite and the supercages. The molecules are located in the supercage, the plane of the aromatic ring being

perpendicular to the (111) axis with short contacts t
disordered with respect to the 6-fold axis of the ring,

o the Na* cations on II. The para and ortho isomers are statistically
and are equally distributed over these orientations, whereas m-xylene

molecules occupy only three of these orientations due to interactions of the methyl groups with the framework oxygens. A
second crystallographic site was found occupied by the para and ortho isomers at low coverages. It is the less favored one:

the molecules are at longer distances from the Na*

cations and at no distance shorter than 0.32 nm from the framework.

Even at high coverages this second site is less occupied. Not all the adsorbed molecules, however, can be located in the
high-coverage samples. The powder diffraction pattern appears to indicate a liquidlike phase of xylenes within the cavities.

Introduction

Synthetic Y zeolites can be converted into active catalysts by
exchanging the residual sodium cations with rare earth cations,’
thereby improving the activity of the zeolite in reactions like the
isomerization/disproportionation of xylenes? or the dispropor-
tionation of trimethylbenzenes.’> These reactions take place in
the channels and cavities of the zeolite framework in which
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molecules smaller than the pore openings (for zeolite Y ca. 0.74
nm)* can be adsorbed.

The diffusion and sorption of aromatic molecules in fauja-
site-type zeolites have been the subject of many studies. Diffusion
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